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Hidden entropy production and work fluctuations in an ideal active gas
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Collections of self-propelled particles that move persistently by continuously consuming free energy are a
paradigmatic example of active matter. In these systems, unlike Brownian “hot colloids,” the breakdown of
detailed balance yields a continuous production of entropy at steady state, even for an ideal active gas. We
quantify the irreversibility for a noninteracting active particle in two dimensions by treating both conjugated and
time-reversed dynamics. By starting with underdamped dynamics, we identify a hidden rate of entropy production
required to maintain persistence and prevent the rapidly relaxing momenta from thermalizing, even in the limit
of very large friction. Additionally, comparing two popular models of self-propulsion with identical dissipation
on average, we find that the fluctuations and large deviations in work done are markedly different, providing
thermodynamic insight into the varying extents to which macroscopically similar active matter systems may
depart from equilibrium.
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Introduction. What is irreversible in active matter? These
systems are driven out of equilibrium by the continuous and
sustained consumption of free energy at the microscopic scale
[1–3], but quantifying such irreversibility is challenging. The
persistent motion of E. coli performing run and tumble [4,5] or
of synthetic active colloids propelled by autophoresis [6,7] are
classic examples of motion that breaks microscopic detailed
balance by virtue of self-propulsion [8], yet is diffusive on large
scales. The detailed balance violations due to persistence often
do not survive coarse graining (even in the presence of weak
external fields). This restores an effective equilibrium picture
on large scales, thereby allowing a dilute gas of self-propelled
particles to be essentially treated as a gas of “hot colloids”
[9] with an effective temperature [10–13]. In characterizing
detailed balance violations on a coarse-grained scale, even
manifestly nonequilibrium phenomena, such as condensation
in the absence of attraction [14,15], may then be understood
by comparing them to the “nearest” equilibriumlike model at
the same scale [16].

To quantify irreversibility of an ideal active gas, we examine
here the microscopic dynamics of an individual active particle
and evaluate the entropy production rate 〈�ṡ〉 in two popular
simple models of self-propelled particles in two dimensions
(2D): Active Brownian particles (ABPs) where the propulsive
force has fixed magnitude and its direction is randomized
by rotational noise, and active Ornstein-Uhlenbeck particles
(AOUPs) where self-propulsion is modeled as a Gaussian
colored noise. Entropy production provides a direct measure
of the breakdown of time-reversal symmetry (TRS) at steady
state. We show below that it crucially hinges on whether
the propulsive force is treated as even under TRS [17,18],
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appropriate for active phoretic colloids, vibrated rods, or
swimming bacteria, where the direction of motility encodes
a physical asymmetry of the microscopic active unit, or as odd
under TRS [19–21], corresponding to the so-called conjugated
dynamics [22]. Previous work has used both prescriptions,
as well as techniques that leave the sign under TRS unspec-
ified [23–26], all with differing and sometimes conflicting
notions of dissipated heat and its relation to entropy production.
Additionally, a single active particle has often been found
to have vanishing entropy production [21,23–26], seemingly
suggesting equilibrium behavior. We show that some of these
issues can be clarified by using underdamped dynamics along
with thermal noise and taking the large friction limit only at
the end, because for both TRS prescriptions the fast momenta
degrees of freedom are responsible for a finite hidden entropy
production [27–30], thereby demonstrating that a single active
particle is thermodynamically irreversible. This is most evident
for the case of conjugated dynamics where the hidden 〈�ṡ〉
is the only contribution, while it is subdominant at large
friction for TRS-even propulsive forces (see Table I). If, in
contrast, inertia is neglected from the outset, a single active
particle behaves as a passive colloid pulled by an external force
(TRS-even propulsion) or as a colloid moving at the velocity
of the solvent in a sheared fluid [21,31] (propulsion here is the
solvent velocity, which is TRS odd), with 〈�ṡ〉 = 0. This result
holds for both ABP and AOUP, thereby not distinguishing the
two models on the average.

We then show that the nonequilibrium nature of active
particles becomes evident in the fluctuations of thermodynamic
quantities. By comparing the ABP and the AOUP models, we
find that even though they have the same long-time dynamics
and dissipate identically on average, their work fluctuations
are vastly different. We demonstrate in a precise fashion that
the AOUP gas is always further away from equilibrium com-
pared to the ABP gas, for the same motility and persistence.
Specifically, the variance of the cumulative work done to propel

2470-0045/2018/98(2)/020604(6) 020604-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.020604&domain=pdf&date_stamp=2018-08-30
https://doi.org/10.1103/PhysRevE.98.020604


SURAJ SHANKAR AND M. CRISTINA MARCHETTI PHYSICAL REVIEW E 98, 020604(R) (2018)

TABLE I. A summary of the average entropy production rate 〈�ṡ〉
for various cases, applicable to both noninteracting ABP and AOUP
(using Ta = v2

0γ /2DR). The difference between the results obtained
with underdamped and overdamped dynamics represents the hidden
entropy production.

〈�ṡ〉 Overdamped Underdamped

TRS-odd propulsion 0
v2

0γDR

T (γ+DR )

TRS-even propulsion
v2

0γ

T

v2
0γ 2

T (γ+DR )

the particles, corresponding to the Fano factor, is strongly
enhanced by activity over its linear response value for the
AOUP, but not for the ABP. Our work can be extended to
thermodynamic quantities of interacting active systems along
with their fluctuations that are beginning to be accessible
experimentally [32–36].

The models. We consider an underdamped active particle
and set the mass and Boltzmann factor to unity. The particle
velocity ṙ = p obeys a Langevin equation,

ṗ = −γ p + fp +
√

2T γ ξ (t ), (1)

where γ is the friction, T the temperature of the environment
providing a heat bath, and ξ (t ) a delta-correlated Gaussian
white noise. For ABP the propulsive force fp = γ v0ê has fixed
magnitude, with v0 the self-propulsion speed, and direction
randomized by rotational noise, 〈ê(t ) · ê(0)〉 = e−|t |DR . For
AOUP the propulsive force is an Ornstein-Uhlenbeck process,
D−1

R ḟp = −fp + √
2γ Taη(t ) [η(t ) white noise and Ta an active

temperature], so that 〈fp(t ) · fp(0)〉 = 2γ TaDRe−|t |DR . Both
types of particles are diffusive at long times, with diffusivity
D = (T + Ta )/γ , where for ABP, Ta = v2

0γ /(2DR ). It has
been shown that the large-scale phenomenology of the two
models is similar even in the presence of strong interactions
[37,38] where they both exhibit motility-induced phase sep-
aration. Yet, as we shall show below, their thermodynamic
fluctuations are markedly different even at the single particle
level.

Mean entropy production. Irreversibility can be quantified
through dissipation and entropy production, which can be
calculated within the framework of stochastic thermodynamics
[22]. At steady state, the total entropy production of the system
equals the entropy flux to the environment (also called entropy
production of the medium [39]). For a time interval [0, t], it is
given by [40]

�s(t ) = ln

(
P [x(t )|x(0)]

P †[x†(t )|x†(0)]

)
, (2)

where x = {r, p, fp} and P [x(t )|x(0)] is the conditional prob-
ability of starting at x(0) at time τ = 0 and reaching x(t )
at time τ = t along a given trajectory x(τ ). The † denotes
time reversal. The conditional probability for observing a
forward trajectory x(τ ) (τ ∈ [0, t]) is formally written as
P [x(t )|x(0)] ∝ e−A ∏t

τ=0 δ(∂τ r − p), where A[x(τ )] is the
Onsager-Machlup functional [41] (neglecting unimportant ad-
ditive constants [42]), given by

A = 1

4T γ

∫ t

0
dτ [∂τ p + γ p − fp]2. (3)

For noninteracting particles, the Hamiltonian of the system
only involves the kinetic energy (H = p2/2) and the first law
takes the form (in Stratanovich convention) [43]

dH = p · dp = d-w − d-q, (4)

where d-w is the propulsive work done and d-q is the heat
dissipated into the reservoir. The sign convention used is
that both heat dissipated into the bath and work done by the
environment on the system are taken to be positive. Requiring
the Clausius relation, we equate d-q(t ) = T �s(t ), which as we
will see below is consistent with Sekimoto’s [43] definition of
heat only for the TRS-even case. It is clear from Eq. (2) that, as
discussed in the Introduction, entropy production depends on
whether the propulsion is treated as a force (hence TRS even)
or as a velocity (hence TRS odd). We discuss both cases here,
although the TRS-even prescription is more directly relevant to
physical realizations. Also, the calculation of the mean entropy
production is outlined here for ABP. The result turns out to be
the same for AOUP.

TRS-odd propulsion. The prescription of conjugated dy-
namics [r†(τ ) = r(t − τ ), p†(τ ) = −p(t − τ ), and f†p(τ ) =
−fp(t − τ ) on a time interval τ ∈ [0, t]; see Fig. 1(a)] most
clearly illustrates the importance of retaining the fast momenta
degrees of freedom and the associated hidden entropy produc-
tion. Considering from the outset overdamped dynamics and
treating motility as a TRS-odd velocity seems to lead identi-
cally to �ṡ = 0, in the absence of interactions [21,23], wrongly
suggesting that the system is in equilibrium [44]. Working
instead with the underdamped equations, we obtain the entropy
production rate to be �ṡ = −ṗ · (p − v0ê)/T . Averaging over
noise, in steady state, we get

〈�ṡ〉 = v2
0γDR

T (γ + DR )
= v2

0

T
DR + O

(
DR

γ

)
. (5)

This demonstrates a hidden entropy production in active matter
arising from the entropic cost to maintain a finite persistence
and evade thermalization of the fast momentum. By taking the
overdamped limit at the very outset, i.e., t � γ −1, the momen-
tum is implicitly assumed to have relaxed to the equilibrium
Maxwell-Boltzmann distribution, but this is simply not true
on timescales of O(D−1

R ) due to the persistence of motion. As
the momentum of the active particle is effectively slaved to the
motility, on short timescales (∼γ −1) it relaxes to the stationary
nonequilibrium distribution Pss (p|ê) ∝ exp(−|p − v0ê|2/2T )
[45]. On timescales ∼D−1

R (>γ −1), the polarization direction
decorrelates, but it also forces the momentum to do the same
in tandem, an act that requires work to be done and dissipated
irreversibly. For γ /DR � 1, one can also view 〈�ṡ〉 as the
symmetrized relative entropy (or the symmetrized Kullback-
Leibler divergence [46]),

�srel = −
∫

d ê
2π

∫
d2p[Peq(p)−Pss (p|ê)] ln

(
Pss (p|ê)

Peq(p)

)
,

(6)

dissipated to the bath in a rotational correlation time D−1
R , with

Peq(p) ∝ exp(−p2/2T ). For DR = 0, the system behaves as
if it were in a background steady deterministic flow and 〈�ṡ〉
vanishes.
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FIG. 1. A cartoon of the trajectories under (a) time conjugated dynamics (fp is TRS odd) and (b) time-reversed dynamics (fp is TRS even)
for a polar self-propelled particle.

TRS-even propulsion. If motility is treated as a TRS-even
nonconservative force [Fig. 1(b)], a single active particle is then
analogous to a driven colloid. In this case r and p transform
as before under time reversal, but f†p(τ ) = fp(t − τ ). Using
Eqs. (3) and (2), the entropy production rate is identified as
�ṡ = p · (γ p − √

2T γ ξ )/T . The rate of heat dissipated q̇ =
T �ṡ is as expected with p = ṙ [43] and the rate of work done
[from Eq. (4)] is given by ẇ = v0γ ê · p, which is the power
injected by the propulsive force fp. At steady state, the average
rate of dissipation is

〈q̇〉 = 〈ẇ〉 = v2
0γ

2

γ + DR

	 v2
0γ

[
1 + O

(
DR

γ

)]
. (7)

For γ � DR the mean dissipation rate is the same as for a
particle dragged by a constant force v0γ . Starting from the
outset with overdamped equations yields identically 〈q̇〉 =
〈ẇ〉 = v2

0γ . Therefore when self-propulsion is treated as a
TRS-even force, all hidden entropy contributions only appear
at subleading order in DR/γ .

The mean entropy production rate for the various combi-
nations considered here is summarized in Table I [47]. Iden-
tifying Ta = v2

0γ /2DR relates the AOUP model to the ABP,
highlighting that both models have the same mean dissipation
rate at steady state. So, the two models are thermodynamically
identical on average.

Work fluctuations. The difference between the two models
and true nonequilibrium nature becomes apparent in their
fluctuations. We compute the variance of the cumulative work
�w(t ) = ∫ t

0 dτ ẇ(τ ) done in propelling the active particle
for a time t . Here, we consider only the physically relevant
TRS-even case. At long times (t → ∞), we have

〈�w(t )2〉 − 〈�w(t )〉2 = 2Tw〈�w(t )〉, (8)

where Tw (the Fano factor) is an effective temperature for work
fluctuations (distinct from the active temperature Ta). One can
compute Tw through a Green-Kubo-like formula, relating it to
the time autocorrelation of the power input,

Tw = 1

〈ẇ〉
∫ ∞

0
dt[〈ẇ(t )ẇ(0)〉 − 〈ẇ〉2]. (9)

As Tw quantifies the relative fluctuations of ẇ, a current,
it obeys a universal bound at steady state, Tw � T , first
conjectured for out-of equilibrium reaction networks [48] and
later proven in a general stronger form by Gingrich et al. [49]. A
remarkable result, the universal bound provides an uncertainty

relation between current fluctuations and dissipation, general-
izing equilibrium fluctuation-dissipation theorems [50] to far
from equilibrium steady states.

For the underdamped ABP we find

T ABP
w = T + 〈ẇ〉D2

R

γ (γ + DR )(γ + 2DR )
	 T , (10)

where the second equality holds for negligible inertia
(γ /DR → ∞), i.e., the ABP saturates the universal dissipation
bound (Tw = T ) for arbitrary motility and persistence. An
important and surprising consequence of this result is that a
free overdamped ABP gas is always within the linear response
regime from a steady state with detailed balance, regardless of
what v0 or DR are. This is especially counterintuitive given
that for large v0 the velocity distribution is non-Maxwellian
and bimodal [Fig. 2(a)]. Since the particle is linearly close to
equilibrium, all higher cumulants of the work done vanish and
one can easily compute the large deviation functional for the
work current Jt , at steady state for large friction, with the result
[see Figs. 3(a) and 3(b)]

lim
t→∞ −1

t
ln P

(
�w(t )

t
= Jt

)
= (Jt − 〈ẇ〉)2

4T 〈ẇ〉 . (11)

In other words, the work distribution is Gaussian and satisfies a
fluctuation theorem 〈e−�w/T 〉 = 1 [22,39]. In Ref. [51], it was
shown that overdamped 2d chiral active Brownian particles
also similarly saturate the dissipation bound and are hence
linearly close to equilibrium as well.

FIG. 2. The steady state probability distribution of the particle
momentum is plotted for (a) the ABP model with v0 = 1 (blue) and
v0 = 10 (red), and (b) the AOUP model with v0 = 1 (blue) and v0 =
10 (red). As both px and py are identically distributed, they are plotted
with the same color and symbol. Parameters γ = 100, DR = 1, and
T = 1 are chosen common.
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FIG. 3. The large deviation function of work done in the ABP
[(a) v0 = 1, (b) v0 = 10] and AOUP [(c) v0 = 1, (d) v0 = 10] models.
The black lines in all four plots are the theoretical predictions from
Eqs. (11) and (13) for the two models. The other parameters are γ =
100, DR = 1, and T = 1.

Doing the same, we compute the work fluctuations for the
AOUP, with the result

T AOUP
w = T + Ta + 〈ẇ〉

2(DR + γ )
. (12)

Unlike the ABP, the AOUP model does not saturate the
universal bound on dissipation in the limit of large friction.
In fact, T AOUP

w 	 T + Ta (for γ � DR) [52], indicating that
the system moves further way from the equilibrium steady
state (and the linear response regime) with increasing active
temperature Ta . These enhanced work fluctuations arise from
the fact that the fluctuations of the propulsive force fp are
unbounded for AOUP and lead to the power input being
correlated on longer timescales ∼D−1

R [instead of (γ + DR )−1

as for the ABP model]. Our results suggest that tracers in an
active bath that are usually thought to be well described as
AOUP [53] may be thermodynamically distinct from actual
active particles.

One can also compute the large-deviation function of work
done, for the AOUP model (see Ref. [54] for the deriva-
tion). We compute the cumulant generating function F (λ) =
− ln〈e−λ�w(t )〉/t as an eigenvalue of a tilted Fokker-Planck
operator [40] using a Gaussian ansatz for the corresponding
eigenfunction, with the result

F (λ)

γ
= −1 − DR

γ
+

√
1+D2

R

γ 2
+2

DR

γ

√
1 + 4Taλ(1 − T λ).

(13)

This function has branch cuts outside the interval [λ−, λ+],

with λ± = [1 ± √
1 + T/Ta]/(2T ) leading to exponential

non-Gaussian tails in the work distribution. The large-deviation
function is then obtained by a Legendre transform of F (λ)
and is shown in Figs. 3(c) and 3(d). A Gallavotti-Cohen-like
symmetry [40] is realized here as F (λ) = F (T −1 − λ) and
leads to a corresponding detailed fluctuation theorem for
P (�w). Extreme rare fluctuations in the AOUP model are
far in excess than in the ABP. As recent experiments have
measured both Gaussian and non-Gaussian large deviations in
a self-propelled particle [32], we expect our results can advise
the thermodynamically appropriate modeling of such particles.
It would be interesting to see how these fluctuations change
when interactions are added in both models and how these
results will play out when extended to coarse-grained scales.
Some recent works [55,56] have correlated large deviations in
work to clustering and phase separation in interacting active
systems. Even from our single particle treatment, we see that
large fluctuations are controlled by the statistics of persistence
(that can be modified by interactions) and encodes the time
correlation of the power input 〈ẇ(t )ẇ(0)〉. A comparison in-
cluding the interaction time scale in the power autocorrelation
is left for future work.

Conclusions. To conclude, we have argued the importance
of including fast degrees of freedom in thermodynamic treat-
ments of active matter and shown how one may gain different
notions of irreversibility from conjugated and time-reversed
dynamics. The presence of hidden entropy production extends
to other situations as well, for example, in chiral active rotors
[57,58] one would have to retain the fast angular momentum as
well. Additionally, in cases where self-propulsion ultimately
comes from an underlying microscopic chemical reaction,
the chemical variable must be retained to obtain the physical
dissipation experimentally measurable in the system. By work-
ing within a Langevin framework as in Ref. [3] we correctly
reproduce [54] the recent results of Pietzonka and Seifert[18],
without having to introduce a discrete lattice model. The
claimed failure of the time-reversal procedure at the level of
stochastic trajectories [18] is then seen to be a consequence
of the hidden entropy production. Finally, we emphasize the
importance of going beyond average quantities and look at
fluctuations of the work done in propelling two model active
systems. Comparing the ABP and the AOUP models, we
find that even though they have the same long-time dynamics
and dissipate identically on average, their work fluctuations
are vastly different, signaling their distinct nonequilibrium
features.
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�ṡR = fp · [fp − √

2γ Taη(t )]/(γ Ta ), absent in the ABP model.
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